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Abstract 

In this paper is an investigation of unsteady oscillatory MHD free convection, heat and mass 

transfer flow of an electrically conducting viscous incompressible fluid through a porous medium 

along an infinite vertical porous plate with the effects of Hall and ion-slip currents, heat source in a 

rotating system under the influence of Soret effect. The  plate is  assumed  to  oscillate  in  time  

with  constant  frequency  so  that  the  solutions of  the boundary layer equations are the same 

oscillatory  type. The governing system of partial differential equations are transformed by usual 

transformation.  The dimensionless equations are then solved numerically by finite difference 

method. With the help of graphs, the effects of the various important parameters entering into the 

problem on the primary and secondary velocities, temperature and concentration distributions 

within the boundary layer are discussed. Also the effects of the appropriate parameters on the skin 

friction coefficient, rates of heat and mass transfer in terms of the Nusselt and Sherwood numbers 

are presented graphically.      
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1. Introduction 

The MHD mass transfer flow under the action of strong magnetic field plays a role in astrophysical 

and geophysical problems. Hall and ion-slip currents are likely to be important in flows of 

laboratory plasma. In the study of magneto hydrodynamic fluid flow in a rotating system has been 

motivated by several important problems, such as maintenance and secular variations of earth’s 

magnetic field, the internal rotation rate of sun, the structure of rotating stars, the planetary and 

solar dynamo problem, centrifugal machines etc. Convection in porous medium has applications in 

geothermal energy recovery, oil extraction, thermal energy storage and flow through filtering 

devices. The effects of magnetic field on free convection flow are important in liquid-metals, 

electrolytes and ionized gases. The thermal physics of hydro magnetic problems with mass transfer 

is of interest in power engineering and metallurgy. The applications of the effect of Hall current on 

the fluid flow with    variable concentration have been seen in MHD power generators, 
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astrophysical and meteorological studies as well as in plasma physics. The Hall Effect is due merely 

to the sideways magnetic force on the drifting free charges. In recent years, the analysis of 

hydromagnetic flow involving heat and mass transfer in   porous medium has attracted the attention 

of many scholars because of its possible applications in diverse fields of science and technology 

such as–soilsciences, astrophysics,   geophysics, nuclear power reactors etc. In geophysics, it finds 

its applications in the design    of MHD generators and accelerators, underground water energy 

storage system etc.  Effects of Hall current and heat transfer on flow due to a pull of eccentric 

rotating disk were investigated by Asghar et al. (2005).  Singh (1983) studied the effects of Hall 

currents on an oscillatory MHD flow in the Stokes problem past an infinite vertical porous plate. 

The first exact solution of Navier-Stokes equation with flow of viscous incompressible fluid past a 

horizontal plate oscillating in its own plane investigated by Stokes (1851). Natural convection 

effects on Stokes problem was first study by Sondalgekar (1979). The same problem was 

considered by Revankar (2000) for impulsively started or oscillating plate. Turbatu et al. (1998) 

investigated the flow of an incompressible viscous fluid past an infinite plate oscillating with 

increasing or decreasing velocity amplitude of oscillation. Gupta et al. (2003) have analyzed flow in 

the Ekman layer on an oscillating plate.  Soundalgekar et al. (1997) found an exact solution for 

magnetic free convection flow past an oscillating plate. Mass transfer effects on flow past an 

oscillating plate considered by Lahurikar et al. (1995). The study of heat generation or absorption 

effects in moving fluids is important in view of several physical problems, such as fluids 

undergoing exothermic or endothermic chemical reactions. Vajravelu and Hadjinicolaou (1993) 

studied the heat transfer characteristics in the laminar boundary layer of a viscous fluid over a 

stretching sheet with viscous dissipation or frictional heating and internal heat generation. Ziaul 

Haque et al.(2012) studied micropolar fluid behaviors on steady MHD free convection and mass 

transfer flow with constant heat and mass fluxes, joule heating and viscous dissipation. Das et al 

(2004)  have been analyzed finite difference analysis of hydromagnetic flow and heat transfer of an 

elastico-viscous fluid between tow horizontal parallel porous plate. Haque and  Alam(2011)  

studied micropolar fluid behaviours on unsteady MHD heat and Mass transfer flow with constant 

heat and mass fluxes, joule heating and viscous dissipation. Haque and  Alam(2009) have been 

investigated transient heat and mass transfer by mixed convection flow from a vertical porous plate 

with induced magnetic field, constant heat and mass fluxes.  

In this paper the effects of Hall and ion-slip currents on MHD flow in heat and mass transfer of an 

electrically conducting incompressible fluid along an infinite oscillatory vertical porous plate with 

heat source in a rotating system have been considered. Also, the effects of different flow parameters 

encountered in the equations are studied. The problem is governed by system of coupled non-linear 

partial differential equations whose exact solution is difficult to obtain. Hence, the problem is 

solved by finite difference method and is represented graphically.   

2. Mathematical model of the flow  

Consider the unsteady flow of an electrically conducting incompressible viscous fluid past an 

infinite vertical porous plate 0y  . When the plate velocity ( )U t oscillates in time t with a 

frequency n  and is given as  cosntUtU  1)( 0 . The flow is assumed to be in the x direction 

and which is taken along the plate in the upward direction and yaxis is normal to it. Initially the 
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fluids as well as the plate are at rest but for time 0t  the whole system is allowed to rotate with a 

constant angular velocity   about the yaxis.  Initially, it is considered that the plate as well as 

the fluid is at the same temperature. Also it is assumed that 

the temperature of the plate and spices concentration are 

raised to wT ( T )  and wC ( C )  respectively, which are 

there after maintained constant, where wT , wC are 

temperature and spices concentration at the wall and T , 

C  are the temperature and the concentration of the spices 

outside the boundary layer respectively, the physical 

configuration of the problem is shown in Fig.1.  A uniform 

magnetic field B is acting transverse to the plate. Using the 

relation B for the magnetic field, ( , , )x y zB B BB , 

0yB B  has been considered everywhere in the plate ( 0B is 

a constant).  However, for such a fluid, the hall and ion-

slip currents will significantly affected the flow in presence of large magnetic fields. The induced 

magnetic field is neglected since the magnetic Reynolds number of a partially-ionized fluid is very 

small. If ( , , )x y zJ J JJ  is the current density, from the relation 0 J. , yJ constant has been 

obtained. Since the plate is electrically non-conducting, 0yJ  at the plate and hence zero 

everywhere. Since the plate is infinite in extent, all physical quantities, except pressure, are 

functions of y and t only. The equations for the problems are;  

Continuity equation:  0
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Energy equation:     
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Mass equation:          
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The initial and boundary conditions for the model are; 

( , ) 0, ( , ) 0, ( , ) , ( , )u y t w y t T y t T C y t C       for   0t                                                   (6) 

Fig.1 Physical configuration and  

coordinate system 
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 int int
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                   (7) 

where   is very small constant quantity and 0U is uniform velocity, 1e e i    , e is Hall 

current, i  is the ion-slip current, y  is Cartesian co-ordinate, u and w are the components of flow 

velocity, g is the local acceleration due to gravity,  is the thermal expansion coefficient, 
*  is the 

concentration expansion coefficient,   is the kinematic viscosity, k  is the magnetic permeability, 

 is the density of the fluid, e  is the electrical conductivity,  is the thermal conductivity, pc is 

the specific heat at the constant pressure, mD  is the coefficient of mass diffusivity, Q  is the heat 

absorption quantity, Tk is the thermal diffusion ratio, mT  is the mean fluid temperature and 0B  is the 

magnetic component in ydirection.  Now a convenient solution of equation (1) is;  

 0v v  (constant)                                                                                                      (8) 

where the constant 0v  represents the normal velocity at the plate which is positive or negative for 

suction or blowing. Using equation (8),

 

the equations (2)-(5) become; 

Momentum equation: 
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Energy equation: 

2

0 2
( )

p

T T T
v Q T T

t y c y



 

  
   

  
                                                (11) 

Mass equation: 
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The boundary conditions for the model are; 
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3. Mathematical Formulations 
 

For the purpose of solving the system of equations numerically, the transform of governing 

equations into non-dimension form are needed, the usual non-dimensional variables are introduced 

as;  
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Thus introducing the relation (14) in equation (9)-(12), the following dimensionless differential 

equations have been obtained as;  
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The corresponding boundary conditions (13) become as; 
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4. Shear stress, Nusselt and Sherwood number 

The Shear stress along x -axis is given by 
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Shear stress along z -axis is given by 
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5. Solution Technique  
 

Explicit finite difference method to solve the equations (8)-(11). For these purpose, the region within 

the boundary layer is divided by some 

particular lines of Y -axis, where Y -axis is 

normal to the medium as shown in Fig.2. It 

is assume that the maximum length of the 

boundary layer is )50(max Y as corresponds 

to Y  i.e.  Y  varies from 0 to 50 and the 

number of grid spacing in Y direction is 

)400(m , hence the constant mesh size 

along Y -axis  becomes 

)500(13.0  YY  with smaller time 

step,  001.0t . 

Let  
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 denoted the values of , , ,n n n nU W T C  at the end of a time-step. Then 

an appropriate set of finite difference equations corresponding to the equations (15)-(18) are as;   
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The boundary conditions are obtained as  
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The numerical values of shear stress, Nusselt number and Sherwood number are evaluated by five-

point approximate formula for the derivatives.  

The stability conditions of the problem are as follows; 
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Hence the convergence criteria of the method are 12.0rP  and 12.0cS  (details are not shown 

for brevity) 

     Fig.2 Finite difference grid space  
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6. Results and Discussion 

Justification of Grid Space 

To verify the effects of grid space for m , the code is true with three different grid space  

450,400,350m  . It is seen that there is a little change between them which are shown in Fig.3. 

According to this situation, the results of velocity, temperature and concentration have been carried 

out for 400m  

Steady state solution   

The numerical solutions of the non-linear differential equation (15)-(18) under the boundary 

conditions (19) have been performed by applying implicit finite difference method. In order to 

verify the effects of time step size  , the programming code is run our model with seven different 

time step sizes as 10,40,80,90,100,110,120  . To get steady–state solutions, the computations 

have been carried out up to 120  . It is observed that, the result of computations for 

, ,U W T andC , however shows little changes after 80  . Thus the solutions of all variables for 

90   are essentially steady-state. Hence the velocity, temperature and concentration profiles are 

drawn for 

90   which is shown in Fig.4.  
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   Fig.3 Primary velocity for different grid space of   

   rotational parameter R 

    Fig.4 Primary velocity for different time step           

    of rotational parameter R 

 

To investigate the physical situation of the problem, the numerical calculation has been carried out 

for dimensionless   primary velocity(U ), secondary velocity(W ), temperature(T ), 

concentration( C ), shear stress in x -direction( x ), shear stress in z -direction( z ), Nusselt 

number( uN ) and  Sherwood number( hS ) for   various   values   of   the parameters such as Hall 

parameter ( e ), ion-slip parameter( i ), magnetic parameter( M ), rotational parameter   ( R ), 

Prandtl number( rP ), suction parameter ( ), Schmidt number ( cS ), Grashof number( rG ), modified 

Grashof number( mG ), Soret number( 0S ), permeability parameter( )and heat source( ). The 

values for the parameters are chosen arbitrarily in most cases. Some standard values for of the 
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Prandtl number( rP ) is considered because of the physical importance. These are 0.71rP   

corresponds to air, 1.00rP  corresponds to electrolyte solution such as salt water and 7.00rP   

corresponds to water at 020 C . For  computation , 0.01
2


    have been chosen arbitrarily.   

Form Fig.5 (a,b) it is seen that primary velocity (U ) and shear stress in x-direction ( x ) decrease 

with increase of heat source parameter  . The effect of increasing the value of  is to decrease the 

boundary layer which is as expected due to the fact that when heat is absorbed the buoyancy force 

decreases which retards the flow rate. It is seen that from Fig.6 (a,b) secondary velocity W  and 

shear stress in z-direction ( z ) have opposite behavior with an increase of . It can be clearly seen 

that from Fig.7 (a) the temperature profiles decreases with an increase of . Because when heat is 

absorbed, the buoyancy force decreases the temperature profiles. Nusselt number 
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which is shown in Fig.8(a,b) with an increase of .      

It is observed that in Fig. 9(a,b) and Figs. 11(a,b), primary velocity (U ) and shear stress in x-

direction ( x ) increase with an increase of Hall parameter e  and ion-slip parameter
i . The 

effective conductivity decrease with increase of e  and i  which reduces the magnetic damping 

force on primary velocity.  Similar trend arises in secondary velocity W  and shear stress in z-

direction ( z ) profiles with increasing e which is found form in Fig.10. (a,b). It is found that i  

have decreasing effect on W and z  which are shown in Fig.12 (a,b). 

From Fig.13 (a,b),  it has been seen that the primary velocity U  and shear stress in x-direction ( x ) 

decreases with an increase in magnetic parameter M . This is due to the fact that, the transverse 

magnetic field normal to the flow direction, has a tendency to create the drag known as the Lorentz 

force which tends to resist the flow . The secondary velocity W and the shear stress z  
 increase 

with increase in M which has been illustrated in Fig.14 (a,b). The result indicates that the resulting 

Lorentzian body force will not act as a drag force as in conventional MHD flows, but as an aiding 

body force. This will serve to accelerate the secondary fluid velocity.   

In Fig.15 (a,b) illustrate that the primary velocity U  and shear stress in x-direction ( x ) profiles  

decrease with the increase of Prandtl number rP . This is because in the free convection the plate 

velocity is higher than the adjacent fluid velocity and the momentum boundary layer thickness 

decreases.  Fig.16 (a,b), the secondary velocity W and the shear stress z  
are increased with the 

increase of rP . In Fig.17 (a), the temperature profiles T decrease with an increase of rP . If rP  

increases, the thermal diffusivity decreases and these phenomena lead to the decreasing of energy 
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ability that reduces the thermal boundary layer. The Nusselt number  ( uN ) does not show 

approximately any change with an increase of rP  which is shown in Fig.17 (b). 

Fig.18 (a,b) are displayed the effect of rotational parameter R  on primary velocity U  and shear 

stress in x-direction ( x ) are decreased with  increase of R . In fact rotation parameter defines the 

relative magnitude of the Coriolis force and the viscous force, thus rotation retards primary flow in 

the boundary layer. Similar behaviors are found  on secondary velocity W and shear stress in z-

direction ( z ) which are shown in Fig.19 (a,b).  
 

0 10 20 30 40
0

0.5

1

1.5

2

2.5

 

20 40 60 80
3

3.2

3.4

3.6

3.8

 
Fig. 5(a) Primary velocity profiles for different 

values of  heat source parameter   
 

Fig.5(b)  Shear stress in x-direction for different 

values of heat source parameter   

0 10 20 30 40

-0.6

-0.4

-0.2

0

 

20 40 60 80

-0.9

-0.8

-0.7

 
Fig. 6(a) Secondary velocity profiles for different 

values of  heat source parameter   
 

Fig.6(b)  Shear stress in z-direction for different 

values of  heat  source parameter   
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 Fig. 7(a) Temperature  profiles for different values 

of  heat source parameter   
 

Fig. 7(b) Nusselt number for different values of heat 

source parameter   
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Fig.8(a)  Concentration  profiles  for different values 

of heat source parameter   
 

Fig. 8(b) Sherwood number for different values of  

heat source parameter   
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 Fig.9(a)  Primary velocity profiles for different 

values of Hall parameter e  
 

Fig. 9(b) Shear stress in x-direction for different 

values of Hall parameter e  
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Fig. 10(a) Secondary velocity profiles for different 

values of Hall parameter e  
 

Fig.10(b) Shear stress in z-direction for different 

values  of Hall parameter e  
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Fig. 11(a)  Primary velocity profiles for different 

values of ion-slip parameter i  
 

Fig. 11(b) Shear stress in x-direction for different 

values of  ion-slip  parameter i  
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 Fig. 12(a)Secondary velocity profiles for different 

values of ion-slip parameter i  
 

Fig. 12(b)  Shear stress in z-direction for different 

values of ion-slip parameter i  
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Fig. 13(a) Primary velocity profiles for different 

values of magnetic parameter M  
 

Fig. 13(b) Shear stress  in x-direction for different 

values of magnetic parameter M  
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 Fig. 14(a) Secondary velocity profiles for different 

values of magnetic parameter M  
 

Fig. 14(b) Shear stress in z-direction for different 

values of magnetic parameter M  
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 Fig. 15(a) Primary velocity profiles for different  

values of Prandtl number rP
 

 

Fig. 15(b) Shear stress  in x-direction for different 

values of Prandtl number rP   
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 Fig. 16(a) Secondary velocity profiles for different 

values of Prandtl number rP
 

 

Fig. 16(b) Shear stress in z-direction for different  

values of Prandtl number rP  
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 Fig. 17(a) Temperature  profiles for different values 

of Prandtl number rP
 

 

Fig. 17(b) Nusselt number for different values of 

Prandtl number rP  
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 Fig. 18(a) Primary velocity profiles for different 

values of rotational parameter  R  
 

Fig. 18(b) Shear stress  in x-direction for different 

values of rotational parameter R   
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 Fig.19(a) Secondary velocity profiles  for different 

values of rotational parameter  R  

Fig. 19(b) Shear stress  in z-direction for different 

values of rotational parameter R  

 

7. Conclusions 

In this study, the finite difference solution of unsteady MHD free convection and mass transfer flow 

through a vertical oscillatory porous plate in a rotating porous medium with hall, ion-slip currents 

and heat source is investigated. The following conclusions are drawn:  

1. Primary velocity, shear stress in x-direction are increased for increase e , i  while decrease with  

    the increase of ,,, MPR r  . 

2. Secondary velocity, shear stress in z-direction are increased for increasing  ,,, er MP  while   

     decrease with the increase of Ri , .  

3. Temperature profiles are decreased for increasing ,rP  while Nusselt number increases for            

     But Prandtl number yields no effect on Nusselt number. 

4. Concentration profiles increases for increasing values of  while reverse effect on Sherwood   

     number is observed. 

Here  magnetic and heat source parameter are used significantly to control the flow and heat 

transfer characteristics. 
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